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Higgs Bundles and the Hitchin Moduli Space




Higgs bundles

e C:compact Riemann surface.
e E:complex vector bundle over C.

A Higgs bundle is a pair (0, ©), where 0 is a holomorphic structure on
E,and p € 2%°(C,End(E)) with 0 = 0.

Example

Suppose degE = 0, and choose 0y, so that & := (E,d;) = K> @K~ 1/2,
Then there is a family of Higgs bundles given by

0 ¢
(5 8):

parametrized by holomorphic quadratic differentials q € H°(C,K?).
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Hitchin moduli space

A Higgs bundle (g, @) is (semi)stable, if u(F) < u(&) (resp. <), for all
p-invariant holomorphic subbundle & of & = (E, 0;).

Denote the rank and degree of}? by r and d. The moduli space of stable
Higgs bundles is ./#°(r,d) = {(0g, ¢) stable } / 4, where the complex
gauge transformations g € Y actsas g - (g, ) = (g 100 08,8 ' 9g).

+ OnC =CP!, #5(r,d) = @.

o M5(1,d) = T*Pic?(C).

o M*(r,d) is a complex quasi-projective variety containing .#°(r,d) as an

open smooth subvariety of dimension 2 + 2r?(g — 1) (Nitsure, 1991).

Remark. When the structure group of E is G, one can define G¢-Higgs
bundles, then ¢ € 2V°(C, gc(E)).

From now on we consider SL(r, C)-Higgs bundles, then deg E = 0, and the
dimension of the moduli space becomes 2(r2 — 1)(g — 1).
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Metrics




From Yang-Mills to Higgs

R*  «F,=F,
A=Y1 Adx F; = 0A; — 0A + [AjA)]
Fpy= F34’ Fi3 = —F24’ F14 = Fys.

Self-dual Yang-Mills
(Instanton)

Assume that A is invariant under x3- and x*-translations. Let z = x; + ix,,
thenA=A;dx' +A,dx* and & = %(A3 —iA,)dz satisfies (over C,)

0a® =0, Fy+[®,&*0]=0. (1)

The equations can be defined on any Riemann surface.

Theorem (Hitchin, 1987b; Simpson, 1988)

For (0g, ) stable, there exists a unique Hermitian metric h (called
harmonic metric) solving the Hitchin equation

Fpa,m + [@, 9™ =0.
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L? metric

Fix a Hermitian metric hy on E. Using the theorem we obtain (A, ®) from
stable (g, @), where g -h = hy, A= D (g~ 0xg,hy), ® = g ' pg. Then the
Hitchin moduli space 4 = {(7g, ) stable } / Y is isomorphic to

{(A, @) irreducible |F, + [6,®*0] = 0,0,8 = 0} / 9.

Note that (A, ®) € € = .o/ (E, hy) x 2V0(sl(E)), the tangent space of
o (E,hy) is 21 (su(E)) = Q%! (sl(E)). Define

10,1 + 10,1 + 10,1 20,1 2 2
g2 (A2, 6y, (A2, b)) = 2Re f OOy, 4 by, b0

% carries three constant complex structures

I(a’ ¢> = (ia’i¢)’ J(a’ ¢> = (i¢*h0:_ia*h0)’ K(a’ ¢) = (_¢*ho’a*h0)'
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Hyperkahler quotient

We let w, = g;2(e-,-), where o € {I,J,K}. Group of unitary gauge
transformations ¥ acts on 6 by isometries. This group action is
tri-Hamiltonian: for each e, there is a moment map u, : ¢ — (Lie 9)*
generating the action, i.e.,

due(1)() = wu(X,,°)
where X, is the fundamental vector field generated by y € Lie 4. Remarkably,
My (A) ¢) = FA + [¢’ ¢*h0]: (AuJ + IALLK)(A) ) = _ZISAqS'

By the hyperkahler quotient construction of Hitchin, Karlhede, Lindstrom,
and Rocek (1987),

M= p7(0) iy (0) g (0)/9

is a hyperkahler manifold. Moreover, g;2 is complete.
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Semiflat metric

Definition (Hitchin fibration, SL(2, C) case)

The Hitchin fibration (Hitchin, 1987a) is a surjective holomorphic map

A M — B :=H(K?),[(0, )] — detp.

000000

et s

M is completely integrable (generic fibers are Lagrangian tori), so by Freed
(1999), it carries a semiflat metric g, meaning that it is flat in the fiber
direction and orthogonal to the base. g is an incomplete hyperkahler metric.
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Metric comparison

Theorem (Metric Comparison)

Fix [(Og, )] € ', e, det ¢ has simple zeros. Then for infinitesimal
deformations [(n), t¢)] € Tja, r,))-#' along the ray [(Jg, t)],

I[(n, t‘i’)]”éﬂ —I[(7, tc,b)]lli,sf =0(e "), as t — oo.

» Mazzeo, Swoboda, Weiss, and Witt (2019) proved polynomial decay for the
SL(2,C) case.

» Dumas and Neitzke (2018) proved exponential decay along the Hitchin
section in the SL(2, C) case.

* Fredrickson (2019) proved exponential decay in the SL(r, C) case.

« Fredrickson, Mazzeo, Swoboda, and Weiss (2020) proved exponential
decay in the SL(2, C) parabolic case (Higgs field has simple poles).

Irregular Hitchin moduli spaces provide more hyperkahler metrics.
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the Irregular Case




Irregular Hitchin moduli space

To define the irregular Hitchin moduli space, we need to fix the extra data:
e D:divisor on C.
 Singularity data near S, the support of D.

* parabolic structure at each x € S. In SL(2, C) case, this means a choice of
the filtration {0} c L, < E, with weights 1 > ay, > a; >0, a; + a, = 1.

As before, the moduli space . is {(Jg, ¢) stable}/%c, but now the gauge

transformations should preserve the filtrations, and ¢ is meromorphic:

« ¢ e H°(C,ParEnd(&) ® K(D)).

e ( is compatible with the singularity data, meaning that in some local
holomorphic trivialization of & near x € S,

A, Ay .
¢ =|—+---+ — + holomorphic terms | dz,
z™m b4

where A;'s are matrices fixed by the singularity data.
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Metric comparison in the irregular case

Now we consider SL(2, C)-Higgs bundles over C = CP. In this case trg = 0,
pdegE = degE + |S| =0, and dim¢ .# = 2(degD — 3). Previously defined
hyperkahler metrics g;» and g can be generalized to the irregular setting.
Biquard and Boalch (2004) proved that g;» is a complete hyperkahler metric
(for generic data).

Theorem (Chen and Li, 2022)

Fix a generic curve [(0g, ¢,)] in -, and an infinitesimal deformation
[(1, )] € Ty3,.0))#-As t — o, there exist positive constants ¢,
such that

1L, )2, =1, )2, = 0(e™").

New features in the irregular case:
« In ./, there is no natural C* action: t - [(g, ¢)] = [(Op, t¥)].
e Analysis near irregular singularities.
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A curve in ./

For simplicity, we consider Higgs bundles with an (untwisted) order 4 pole.
Recall the Hitchin fibration # : 4 — B, [(0g, p)] — dety. Now

8
t
B = Be L L) az2leec t.
kzszk Z4

Here u;'s are constants determined by the singularity data. The pole is
untwisted implies ug # O, by rescaling, we assume ug = —1. Then we can
find a curve [(0g, ¢, )] parametrized by t, where § ~ 0 ® 0(—1), and

_dz (ao(f) b.(2) >,

24 \co+2 —aqy(t)

t

where —ay(t)* — by(2)(co +2) = tz* + -+ + uyz — 1 := 9,(2), and
—ay(t)? = Ve(—co)- Let Z, = {z;(t)};_, be the zero set of ¥,(z), then
z;(t) ~ t~/4™k=1)/2 (assume t is real and positive).
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Idea of proof

We use a gluing process similar to that in Fredrickson et al. (2020). For
[(0, 9)] € Ty(a,.0,)# the L? metric can be expressed as

I @)1l =2 J (7= gh2 +1¢ + [, @2,

where 7, c,b,h satisfy the infinitesimal Hitchin equations and the Coulomb
gauge condition. g can be computed by the same formula with h,, h
replaced by h;°, h™. Here h{“ is the metric solving the decoupled Hitchin

equations (pushfoward the HE-metric on the spectral line bundle)

*kpo0
Fhloo =0, [(pt’(iotht ]=0'

Essentially, we only need to compare h, and h?o, in the following way

desingularize 5 a erturb
hy SRR pPP PR b,
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Local forms (untwisted order four pole)

Locally in a disc of radius k't ~*/# around x € Z,, one can find holomorphic

coordinate ¢ such that det p, = —t%/4Z d¢2 Rescaling to get —t3/2{d&2.

_ - 0 1
g =0, %—t?’/“(g )dcz

o F1/2 0 oo _ 122 (M)l (r) 0
t =\ o ,v2) T 0 =122 (Ml (r) |

where r = ], and [, (r) < e~ solves the ODE
(0 + 0,/r)l, = 8t*rsinh(2l,).

Near the order four pole, no desingularization is needed (h; is compatible
with the parabolic structure): in a local holomorphic frame,
0, =2 /—V,(2) dlag (1,-1)dz, hY =h{™ = diag(|z[*™, |z]>*2).

—52t3/4

Then ||Fyae + [, ‘Pt ]||L2(happ) <ce
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Modularity Conjecture




Gravitational instantons

Non-compact complete hyperkahler manifolds with S|Rm|2 < oo are called

gravitational instantons. As an improvement of earlier works of Minerbe

(2010), Chen and Chen (2021b), Sun and Zhang (2023) have proved that any
gravitational instanton must be ALE, ALF, ALG, ALH, ALG* or ALH*.

Curvature Volume | Tangent cone at infinity

ALE o(r=° o(r*) R*/T
ALF-A; o(r=3) o(r?®) R®
ALF-Dj, o(r=3) o(r?) R%/Z,

ALG o(r=2%,6= | 0(r? Cp

mlnneZ ,n<2f 2/3 -

ALG* | O(r~*(logr)~") | 0O(r?) R?/Z,

ALH 0(e~°") o(r) [0,00)

ALH* 0o(r=2) O(r*3) [0,0)
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Modularity Conjecture

Modularity Conjecture (Boalch)

type.

Every Hitchin moduli space of dimension four is of type ALG or ALG*. Con-
versely, every ALG and ALG* gravitational instantons with Vol ~ r
be realized as a Hitchin moduli space. The conjectural correspondence
for ALG spaces is listed below. The tilde (7) indicates a twisted irregular

2

can

Regular Iy II IT*
C T? CP! cp! CP!
D {0,1,pg,0} | {0,1,0} 4.{0}
G| u@ SU(2) SU(6) SU(2)
111 II* v IV*
c CP! Ccp! CP! CP!
D | {0,1,00} 4-{0} {0,1,00} | 3-{0} + {00}
G| su(4) SU(2) SU(3) SU(2)
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Semiflat metric and model metric (untwisted order four pole)

Recall ¥, (z) = tz* + -+ +uz — 1= fH;::l(Z — 2, (t)). The Hitchin fiber is
(the compactification of) {—a2 = ¥,(—c,) | (ag, ¢o) € C*}, then it is
isomorphicto C/(Z® t(t)Z). ©(t) = A~ (I(t)), where [(t) is the
cross-ratio of z, (t)'s. We have lim,_, , 7(t) = i.

The semiflat metric restricted to the Hitchin base (special Kahler metric) is

(e o
gk (Ve, V) = olg = idzdz
c |vt| |t| ’H z—zk ))
_ dr? +r2d6?
= (G +o(r ) A

where r = |¢t|. This is a conic metric with § =1 — (1/2)/2 = 3/4.
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ALG metrics from rank two irregular Hitchin moduli space

Kodaira type II* II1r* IV*
Dynkin diagram Ay A A,
p : ; 5
T eZni/3 i ezm/s
D 4-{0} 4. {0} 3. {0} + {00}
or3-{0} + {o0}
Table. ALG

B, T means that a dense set of . is asymptotic to
{zeC,argz e (0,2nP)} x C/(ZD Zr).

The Kodaira type means that .# is biholomorphic to (Chen and Chen, 2021a)
a rational elliptic surface minus a fiber with the given Kodaira type. Dynkin
diagram means that H?(.# ) is generated by the given extended Dynkin
diagram. This makes sense because any ALG gravitational instanton with the
same f3 is diffeomorphic to each other (Chen and Viaclovsky, 2021).
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ALG™ metrics

Kodaira type I¥ L¥ Lf I
Dynkin diagram D, D, D, Dy, =A,
D 2-{0} | 2-{0} 2-{0} +2-{o0} {0} + {1}
+2-{®0} | +2-{0} | or {0} + {1} +2 {0} | +2-{oo}

Table. ALG*

The Kodaira type means that .# is biholomorphic to (Chen and Viaclovsky,
2021) a rational elliptic surface minus a fiber with the given Kodaira type.
Dynkin diagram means that H2(.# ) is generated by the given extended
Dynkin diagram. This makes sense because any ALG* gravitational instanton
with the same Kodaira type at infinity is diffeomorphic to each other (Chen
and Viaclovsky, 2021).
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Thank you for your attention!
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